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It is currently common practice in theoretical ocean acoustics to derive parameter resolution bounds
for a monochromatic measurement of the temporally fluctuating field received by a hydrophone
array. However, a monochromatic measurement corresponds to a single random sample. In applied
ocean acoustics, single samples are seldom if ever used for parameter estimation because the
associated error can be unnecessarily large. Instead estimates are derived from ensemble averages
such as the sample covariance. To bridge the gap between these two approaches, the Fisher
Information for the sample covariance is shown to be equal to the number of independent and
stationary samples times the Fisher Information for a single sample. Therefore,there are no
practical limits on parameter resolutionif ~1! the bound for a single sample is finite, which is
generally the case of interest,~2! a sufficiently large population of independent samples can be
found. The parameter resolution issue then becomes one of determining the maximum number of
such samples. This number is set by physical variables that do not appear in the monochromatic or
instantaneous measurement. A means of determining this number from the temporal coherence of
the received field and the measurement time is presented.

PACS numbers: 43.30.Pe, 43.30.Vh, 43.30.Wi

INTRODUCTION

Recently an inconsistency has emerged between theo-
retical and applied ocean acoustics. A number of parameter
resolution bounds have appeared in the literature. Many of
these bounds have analytic forms that do not allow for the
possibility of ensemble averaging, including some bounds
given by the present author, and therefore predict unrealisti-
cally poor resolution for a given set of parameters.1–5 This is
in direct contrast to current practice in applied ocean acous-
tics where ensemble averaging is widely used to lower the
variance in parameter estimation.

In particular, the complex sample covariance of a sensor
array is generally the measurement from which parameters
are estimated in applications of narrow-band matched field
processing and beamforming.6 The sample covariance is ob-
tained by ensemble averaging instantaneous measurements
of a sensor array’s spatial covariance for a fixed narrow-band
about a given frequency. While the averaging is usually done
by sampling in the time domain, the result is equivalent to
averaging the same number of independent frequency com-
ponents across the narrow-band of the measurement. As an
estimator of the true covariance, the sample covariance has
obvious advantages over an instantaneous measurement be-
cause its variance can be linearly reduced with the number of
independent and stationary samples in the estimate.

However, many theoretical parameter resolution bounds
for underwater acoustics collapse the finite bandwidth of the
sample covariance to a single-frequency or monochromatic
measure.1–5 But a monochromatic measurement is statisti-
cally similar to an instantaneous one in the sense that each
constitutes only a single independent sample of a temporally
fluctuating quantity. This is because the time-bandwidth
product of a monochromatic measurement, like that of an
instantaneous one, is by definition unity. Clearly, the vari-
ance of a parameter estimate derived from a single sample

may be unnecessarily large if additional independent samples
are available. But it is implicit in ocean-acoustic practice that
such additional samples are typically available because the
very evidence that is necessary to establish the validity of a
statistical approach must be obtained from the observation of
far more than a single random sample of the measurement
variable. This same abundance of samples can then be used
to reduce the variance in a parameter estimate.

To bridge the gap between theory and practice, the
Fisher information for a measurement of the complex sample
covariance is shown to be equal to the number of indepen-
dent and stationary samples available times the Fisher infor-
mation for a single sample. Therefore,there are no practical
limits on parameter resolutionif ~1! the bound for a single
sample is finite, which is generally the case of interest,~2! a
sufficiently large population of such samples can be found.

The parameter resolution issue then becomes one of de-
termining the maximum number of independent and identi-
cally distributed samples available. However, this number is
set by physical variables that do not appear in the instanta-
neous or monochromatic measurement, and consequently, is
not accounted for in the monochromatic bounds of the
present ocean-acoustics literature.1–5 To remedy this situa-
tion, a means of determining the maximum number of inde-
pendent samples available in a given stationary measurement
period is presented.

It is notable that in their matched field treatments of
broadband signals, Song7,8 as well as Fawcett and Maranda9

have shown that the optimal position resolution of a target in
a waveguide can generally improve by increasing the dura-
tion of the received signal, if other parameters such as the
signal bandwidth and noise characteristics are held fixed.
This is consistent with well-established radar range-
estimation bounds derived for targets in free space.10 Appar-
ently, the implication of these results has not been fully re-
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alized in ocean-acoustic modeling of narrow-band signals.
Therefore, it is the aim of the present paper to explicitly
show how optimal parameter resolution is increased by av-
eraging independent fluctuations of the measurement vari-
able.

In Sec. I, a general expression is derived for the Fisher
information matrix contained in a measurement of the com-
plex sample covariance. This is done without specific knowl-
edge of the probability distribution of the measurement. Two
practical cases are examined in Secs. II and III, respectively.
First, the entire received field is assumed to be fully random-
ized. Then, the signal is allowed to have a nonfluctuating
component.

In the first case, it is assumed that the instantaneous
fields received by the sensor array are circular complex
Gaussian random~CCGR! variables11 so that both the signal
and noise components fluctuate over temporal samples. This
is a standard assumption implicit in the derivation of many
ocean acoustics parameter bounds,1–5 but is also well
founded in a variety of other fields such as optics and
radar.11,12 It is additionally assumed that measurements
across the array may be correlated at any instant, but all
discrete samples are independent and stationary over time.
The Fisher information matrix for the sample covariance is
then found to equal the product of the Fisher information
matrix for an instantaneous measurement of the field across
the array and the number of independent and stationary
samples. Consequently, the Fisher information matrix of
Refs. 1–5 is found to only be valid for the special case of a
single monochromatic measurement.

Previously derived monochromatic parameter resolution
bounds,1–5 therefore, are reduced in direct proportion to the
available number of independent and stationary samples
when finite bandwidth is allowed. An expression for this
number is given in terms of the temporal coherence of the
received field and the measurement time. Appropriately sub-
stituting this expression into an analytic formula recently de-
rived by Leeet al.13 for the exact distribution of a discrete-
sample-covariance element yields a new approximate
probability distribution for an element of the continuous-time
sample covariance. This approximate distribution is the com-
plex counterpart to Rice’s distribution for mean-square noise
current14 and Mandel’s distribution for the intensity fluctua-
tions of a photon beam.15 In optical applications, it can be
used to describe the statistical properties of finite-time-
averaged mutual intensity11 under the assumption of cross-
spectral purity.16

In the second case, it is assumed that the field received
by the sensor array contains a deterministic signal compo-
nent amid an additive CCGR component. It is shown that the
Fisher information matrix for this sample covariance is dif-
ferent from the fully random case but is directly proportional
to the number of independent samples available, as antici-
pated. Optimal parameter resolution, therefore, can again be
significantly improved by averaging identically distributed
instantaneous covariance samples. The number of indepen-
dent samples available is again given in terms of the tempo-
ral coherence of the random component of the received field
and the measurement time.

Two illustrative examples that have a significant impact
on the interpretation of published literature are given in Sec.
IV. These are for matched field tomography of internal
waves, and target detection using ambient noise as a source
of opportunity.

I. FISHER INFORMATION FOR THE COMPLEX
SAMPLE COVARIANCE

The random vectorF[n] contains the instantaneous
complex fieldsf i [n] measured by sensorsi51,2,3,...,NF at
discrete timen. To permit spatial coherence across the array
at any instantn, it is assumed that any samplef i [n] may be
correlated with anyf j [n]. However, all field samples with
differing discrete-time indexes are assumed to be indepen-
dent. For the intended application in interferometry, all fields
are assumed to occupy a narrow band about the same carrier
frequency such that the bandwidth is much less than the
propagation speed divided by the array aperture. More pre-
cise constraints on the bandwidth for application in matched
field processing are discussed in Sec. IV. A specific exten-
sion to broadband applications is provided for a fully ran-
domized field in Sec. II.

The complex sample covariance is then defined as

S@N#5
1

N (
n51

N

F@n#FH@n#, ~1!

whereS[N] is a Hermitian matrix containing the elemental
measurement statisticsSi j [N], for i , j51,2,3,...,NF , where
H denotes complex conjugate transpose. Here, the instanta-
neous mutual intensity11 samplesF[n]FH[n] are assumed
to be identically distributed over time indexn. Practical sce-
narios for which this assumption is valid are investigated in
Secs. II and III.

The complex vectorW of dimensionNF
2 is formed by

stacking the columns ofS, so that the elements ofW are
given by Wij5Si j [N], for i , j51,2,3,...,NF , where the
double subscripted vector element follows notation discussed
in the Appendix for the Kronecker product.17 It is notewor-
thy that in this contextWT5W* . The statistics ofW are
characterized by mean vectorM5^W&, with elementsMi j ,
and covariance matrixC(N), with elements

Ci j ,kl~N!5^~Wij2Mi j !~Wkl2Mkl!* &,

wherei , j ,k,l51,2,3,...,NF . The dependence of the covari-
anceC(N) on the number of independent and stationary
samplesN is explicitly indicated for future reference.

The vector g contains the parametersgk for
k51,2,3,...,Ng . These parameters are assumed to be nonsto-
chastic but presumably can be estimated from the stochastic
dataW.

While the general distribution forW remains unknown
and may be unrealizable in compact form,18 it is assumed to
have a Gaussian asymptote for largeN. This Gaussian as-
ymptote can be written as a conditional probability, forW
giveng, by the relation

P~Wug!'
exp$2 1

2@W2M ~g!#TC21~g;N!@W2M ~g!#%

„~2p!NF
2
uC~g;N!u…1/2

.

~2!
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To be consistent with the Kronecker product and the fact that
bothW andM have double subscripts and contain all the
elements of corresponding Hermitian matrices, the algebra is
akin to vector19,20 rather than complex vector18,20 algebra.
Specifically, the transpose in the exponent is just the trans-
pose and not the Hermitian transpose, and the factors 2 and
1
2 , as well as the power

1
2 are appropriately designated in Eq.

~2!.
For estimation of the parametersg, the elements of the

Fisher information matrixJ~g! are defined by19

Ji j ~g!52EF ]2

]gi]gj
ln P~Wug!G . ~3!

Since the exact form of the distribution forP~Wug! is un-
known, it seems that the Fisher information matrix for the
sample covariance cannot be determined directly from Eq.
~3!. However, there is an alternative approach.

It is well established that ifg is a function of theNa

parameters in vectora that have a known Fisher information
matrix J~a!, the Fisher information matrixJ~g! can be deter-
mined from19,20

J„g~a!…5F]g~a!

]a
J21~a!

]g~a!T

]a G21

. ~4!

Suppose the parametera is the mean ofW such thata5M .
Then becauseP~Wua! is asymptotically Gaussian for suffi-
ciently largeN, it is also well established that the inverse
Fisher information matrixJ21~M !, in an estimate of the
meanM , is equal to the covariance matrixC(N) for all
N>1.20 Therefore, substitutingM for a and thenC(N) for
J21~M ! in Eq. ~4! yields the Fisher information matrix
J„g~M !… for all N>1.

This same result can also be obtained by loosely follow-
ing Fisher’s use of the central limit theorem in his initial
derivation21 of what later became known as Fisher informa-
tion. First note thatC(N)5C(1)/N must hold due to the
independence and stationarity of theN samples in the sample
covariance of Eq.~1!. Substituting the Gaussian asymptote
of P~Wug! into the right-hand side of Eq.~3! then yields the
well-known result20

1

2
Tr HC21~1!

]C~1!

]gi
C21~1!

]C~1!

]gj
J 1N

]MT

]gi
C21~1!

]M

]gj
,

~5!

which in the present case approachesJi j ~g! asN increases.
Clearly, only the term involving partial derivatives ofM
with respect to the parameters to be estimated survives asN
becomes sufficiently large. But the resulting asymptotic ex-
pression forJi j ~g! is valid for all N>1 because the Fisher
information for the sum ofN independent and identically
distributed joint measurements equalsN times the Fisher in-
formation for a single such measurement.22 For example, this
is why J~M !5NC21~1! must hold.

The general Fisher information matrixJ~g! for the
sample covariance vectorW can then be written element by
element as

Ji j ~g!5N
]MT

]gi
C21~1!

]M

]gj
. ~6!

Again, this expression is exact for the general case ofN>1.
Further, application of Eq.~6! is not limited to the Hermitian
sample covariance measurements of Eq.~1!, but is valid for
any ensemble average ofN independent and identically dis-
tributed samples that has asymptotically Gaussian statistics
for N sufficiently large, as follows from the referenced works
of Fisher and Rao for real measurement vectors.

The direct proportionality to sample size exhibited in
Eq. ~6! may seem obvious because Fisher information is ad-
ditive for independent samples19,20,22 and is not lost when
such independent identically distributed samples are
combined22 as in Eq.~1!. However, even with these facts, the
preceding analysis side-stepped the difficulty in first obtain-
ing an expression for the joint distribution of the instanta-
neous covariance elements, which may not have an analyti-
cally realizable form, and then substituting this expression
into Eq. ~3!.

Equation ~6! represents the Fisher information for an
arbitrary population ofN independent samples, which may
be collected over time or space, so long as the statistics are
ergodic.11 If the statistics are not ergodic over the entire
population, the expression must be modified so as to add an
additional term of the form of Eq.~6! for each ergodic sub-
population with its own mean, covariance and sample size. If
the measurements are restricted to temporal samples that are
not stationary, the expression must again be modified so as to
add an additional term of the form of Eq.~6! for each sta-
tionary subpopulation. The merit of this approach becomes
questionable if the parameters to be estimated vary signifi-
cantly during what was presumed to be a stationary measure-
ment. For simplicity, from hereon the stochastic component
of the field received at a given hydrophone is assumed to be
stationary in the sense that its temporal coherence depends
only upon the time difference between any two measure-
ments.

It is useful to make the dependence onN explicit in the
Fisher information matrixJ~g;N! so that the additive prop-
erty of the information in independent identically distributed
samples is clearly exhibited viaJ~g;N)5NJ~g;1!. Then the
Cramer–Rao lower bound19,20 is given as

E@~ ĝi2gi !
2#>@J21~g;N!# i i5

1

N
@J21~g;1!# i i , ~7!

which unambiguously shows that the limiting mean-square
estimation error for any unbiased estimateĝi of parametergi
can be made arbitrarily small if~1! a sufficiently large popu-
lation N of independent and identically distributed samples
can be found, and~2! theN51 single-sample bound is finite.

In summary, Eqs.~6! and~7! bound the minimum error
in estimating parameters from the average ofN independent
and identically distributed measurement samples, and exhibit
a well-known inverse dependence on sample sizeN.19–22

Some specific cases are now considered.

2853 2853J. Acoust. Soc. Am., Vol. 99, No. 5, May 1996 Nicholas C. Makris: Parameter resolution bounds

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  18.38.0.166 On: Mon, 12 Jan 2015 18:28:14



II. THE RECEIVED FIELD IS FULLY RANDOMIZED

A. Fisher information for the complex sample
covariance

It is assumed that the instantaneous field samplesf i [n]
are CCGR variables regardless of the relative amplitude be-
tween the signal and noise components. It is again assumed
that the field can be spatially correlated across the array at
any instant, and that all field measurements with differing
discrete-time indexes are independent.

The expectation value of the sample covariance has el-
ements given by

Mi j5EF 1N (
n51

N

f i@n#f j* @n#G5^f i@n#f j* @n#&, ~8!

whereMi j is independent of time. By use of CCGR moment
factoring,11 the covariance of the sample covariance is found
to have the elements

Cqr,st~N!5EF 1N2 (
n51

N

(
m51

N

~fq@n#f r* @n# !~fs@m#f t* @m# !* G
2MqrMst*

5
1

N
MqsMrt* . ~9!

The Fisher information matrix of Eq.~6! can be written as

Ji j ~g!5N(
q51

NF

(
r51

NF

(
s51

NF

(
t51

NF ]@MT#qr
]gi

@C21~1!#qr,st
]@M #st

]gj
.

~10!

Following the Appendix, the identity @C21~1!#qr,st
5@M21#qs@M*21#rt is employed. By also noting that
@MT] qr5@M #rq and @M*21#rt5@M21#tr , the Fisher informa-
tion matrix can be written as

Ji j ~g!5N(
q51

NF

(
r51

NF

(
s51

NF

(
t51

NF

@M21# tr
]@M # rq

]gi
@M21#qs

]@M #st
]gj

.

~11!

Returning again to more familiar double subscripted matrix
notation, let the expected covariance of an instantaneous
sample of the field received across the array be denoted by
the matrix K5^F[n]FH[n] &, which when converted to a
double subscripted vector by stacking its columns yieldsM .
For example, the relationship between the elements ofK and
M is given byKi j5Mi j . Equation~11! can then be written
as

Ji j ~g;N!5N trHK21
]K

]gi
K21

]K

]gj
J . ~12!

Because the signal and noise are assumed to be fully ran-
domized, absolute phase information is lost between inde-
pendent temporal samples. In this case, there is no difference
between the Fisher information for a single instantaneous
sampleF[n] of the field across the array and that for a
single instantaneous sampleF[n]FH[n] of the correspond-
ing mutual intensities. Therefore Eq.~12! also defines the

Fisher information matrix forN independent and identically
distributed joint measurements of the instantaneous field
F[n] across the array. This last observation provides a use-
ful confirmation of the foregoing derivation because it en-
ables Eq.~12! to be immediately obtained from the well-
known form of the Fisher information matrix for a fully
randomized zero-mean complex Gaussian measurement
vector20 and the additive property of Fisher information for
independent measurements.19,20,22

The Fisher information matrix used in Refs. 1–5 for a
monochromatic measurement of the temporally fluctuating
field received by a hydrophone array is only valid for the
special case whenN51 and the measurement is of suffi-
ciently narrow bandwidth. As noted in the introduction, how-
ever, a single sample is the worst possible sample popula-
tion. Therefore, a Cramer–Rao lower bound derived for
N51 has questionable relevance as a ‘‘fundamental’’ bound
on parameter resolution because it gives thebest possible
parameter resolution for theworst possible number of
samples. The ramifications of Eq.~12! on specific results in
the literature are fleshed out in Sec. IV. An evaluation of the
number of independent samples available in a given time
period under the CCGR field assumption is presented next.

B. Sample size as a function of time and coherence

An expression for the maximum number of independent
samples available in a stationary measurement period is now
derived. This is given in terms of the temporal coherence of
the received field and the measurement time. The general
approach is analogous to that used by Rice14 and Mandel15

for related problems. In loose terms, the concept is to deter-
mine the number of times the received field is expected to
fluctuate independently during the given measurement pe-
riod. This is achieved by inspection of the signal-to-noise
ratio ~SNR! of the measurement. Here the SNR is defined as
the squared-mean to variance ratio. For the discretely
sampled case, the SNR of a sample covariance element is

SNR$Si j @N#%5
uMi j u2

Ci j ,i j ~N!
5N

uMi j u2

MiiM j j
, ~13!

whereMii is positive semidefinite and equal to the expected
intensity at sensori . Here the number of independent
samplesN is equal to the SNR for a diagonal element of the
sample covariance, such that SNR$Sii [N] %5N. This is be-
causeSii [1] has an expectation value that equals its standard
deviation under the CCGR field assumption, and allN
samples are independent and identically distributed.

Analogously, the number of independent samples avail-
able in a continuous time measurement ofSii is given by its
SNR. To show this, the sample covariance of Eq.~1! can be
equivalently written as a continuous temporal average

S~T!5
1

T E
2T/2

T/2

F~ t !FH~ t !dt, ~14!
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where the received fieldsF(t) are again assumed to be nar-
row band. For the continuous case, the SNR ofSi j (T) is
defined as

SNR$Si j ~T!%5
^Ri j ~T!&21^I i j ~T!&2

sRi j ~T!
2 1s I i j ~T!

2 , ~15!

where Ri j (T)5Re$Si j (T)%, I i j (T)5Im$Si j (T)%, sRi j (T)
2 is

the variance ofRi j (T), ands I i j (T)
2 is the variance ofI i j (T). It

is not difficult to show that ^Ri j (T)&5Re$Mi j % and
^I i j (T)&5Im$Mi j %.

Expressions for the variances can also be obtained, but
with more difficulty. First, it is useful to employ some defi-
nitions from statistical optics. The complex degree of
coherence11 is defined as

g i j ~t!5^f i~ t1t!f j* ~ t !&/~MiiM j j !
1/2, ~16!

and the complex coherence factor11 is defined as

n i j5g i j ~0!5Mi j /~MiiM j j !
1/2. ~17!

Because the complex degree of coherenceg i j (t) only de-
pends on the time differencet, the fieldsf i(t) must be sta-
tionary over the measurement periodT for this analysis to be
valid.

By defining the normalized cross-spectral density
S i j ( f ) as the Fourier transform of the complex degree of
coherenceg i j (t), andQi j ( f )5(MiiM j j )

1/2
S i j ( f ) as the un-

normalized cross-spectral density which is the Fourier trans-
form of the mutual coherence function^f i(t 1 t)f j* (t)&, the
expectation value of the sample covariance can be expressed
as

Mi j5E
2`

`

Qi j ~ f !d f . ~18!

This spectral representation is useful for computing the
Fisher information matrix of Eq.~12! with state-of-the-art
ocean-acoustic propagation models.

For illustrative purposes, it is now assumed that the
measurements across the array are cross-spectrally pure.16

The mathematical expression of cross-spectral purity is
g i j (t)5n i jg(t), whereg(t)5g i i (t), for all sensorsi and j .
This means that the normalized cross-spectral density mea-
sured between any two spatially separated sensors is the
same as the normalized spectral density measured at any sen-
sor in the array. While this condition is most easily satisfied
for narrow-band measurements,16 which are most commonly
used in ocean-acoustic interferometry,1–9 it is also applicable
to broadband processes.

With these definitions, expressions for the variances of
the real and imaginary parts of the sample covariance ele-
ments can be obtained by extending some results presented
by Goodman,11 in his discussion of the properties of mutual
intensity, to more the general forms

sRi j ~T!
2 5

MiiM j j

2m
~2uRe~n i j !u22un i j u211!, ~19a!

s I i j ~T!
2 5

MiiM j j

2m
~2uIm~n i j !u22un i j u211!, ~19b!

whereRi j (T) and I i j (T) are found to be uncorrelated. Here,
m is defined by

m5F1T E
2`

`

DS t

TD ug~t!u2dtG21

, ~20!

and the triangle function is defined as

D~t!512utu, for utu<1, ~21a!

D~t!50, elsewhere. ~21b!

In terms of the spectral densityS ( f ), which is the Fourier
transform ofg~t!, a useful spectral representation form is
given by

m5F 1T2 E E
2`

`

S ~ f !S * ~ f 8!S sin~pT~ f2 f 8!

p~ f2 f 8! D 2d f8 d fG21

. ~22!

By appropriate substitution of the means and variances
given above, Eq.~15! yields the desired SNR for the con-
tinuous measurement case

SNR$Si j ~T!%5mun i j u2. ~23!

Therefore, the number of independent samples available in
continuous measurement timeT is m, wherem need not be
discrete but must be greater than or equal to one, as is evi-
dent by inspection of Eqs.~20! and ~22!. It is important to
realize that if the assumption of cross-spectral purity cannot
be made, the number of independent samples SNR$Sii (T)%
would not necessarily be identical across all sensorsi of the
array, but would be given by Eqs.~20! or ~22! with g~t! and
S ( f ) replaced byg i i (t) andS i i ( f ), respectively.

The continuous sample sizem can also be interpreted as
the time-bandwidth product of the cross-spectrally pure field
received by the array.11,23 For example, by defining the co-
herence time scale as

tc5E
2`

`

ug~t!u2 dt5E
2`

`

uS ~ f !u2 d f , ~24!

where 1/tc measures the bandwidth of field fluctuations over
an infinite time window, either Eq.~20! or ~22! can be used
to show that asT becomes much greater thantc , m ap-
proachesT/tc . Specifically, the triangle function approaches
a constant in Eq.~20! and the sinc-squared function ap-
proaches a delta function in Eq.~22!. Therefore, the effect of
the finite measurement window on the bandwidth of the re-
ceived fieldB5m/T becomes negligible in this limit so that
the time-bandwidth productm grows linearly with measure-
ment timeT.

In the opposite extreme, inspection of Eq.~20! or ~22!
indicates that astc becomes much greater thanT, the time-
bandwidth productm approaches unity and can no longer be
approximated byT/tc . This is because the coherence time
scale of Eq.~24! is independent of the temporal window
associated with a specific measurement. Here, the complex
degree of coherence behaves as a constant in Eq.~20! and the
spectral density behaves as a delta function in Eq.~22!. This
limiting case describes both the monochromatic and the in-
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stantaneous measurement, for which the number of indepen-
dent samples must be unity, as is well known.11 With regard
to the introduction of this paper, the foregoing asymptotic
analysis provides a mathematical basis for many of the
points raised concerning monochromatic measures and
sample size. Specifically, the monochromatic measurement
is the subset of instantaneous measurements for which the
spectral densityS ( f ) not only behaves as a delta function in
Eq. ~22! becausetc@T, but actually is a delta function
S ( f )5d( f2 f 0) in the sense that there is noT for which
tc@T is not true. Therefore, it is important to realize that a
narrow-band measurement is not necessarily monochro-
matic, but a monochromatic model is often sufficient to ap-
proximate the interferometric processes involved in an in-
stantaneous narrow-band measurement. However, an
instantaneous broadband measurement must generally be de-
scribed by its full spectrumS ( f ) in any modeling effort
even though its time-bandwidth product is unity.

It is useful to now consider the influence that the SNR of
Si j (T) has on estimators found in ocean-acoustic beamform-
ing and matched field processing, since these rely upon in-
tersensor coherence. For such estimators, Eq.~23! implies
that as the intersensor measurements become less correlated
under decreasingun i j u, longer averaging times are necessary
to achieve the same resolution for a given parameter. For
practical considerations, the temporal augmentation neces-
sary for an off-diagonal element ati , j to attain the SNR that
a diagonal element achieved in timeT is expected to be
(T/un i j u

22T), whenT@tc.
Finally, the minimum sample size necessary, but not al-

ways sufficient, to achieve a fixed mean-square error toler-
ance in a parameter estimate can be equated with the ratio of
the Cramer–Rao lower bound for a single sample to the error
threshold. This minimum value then sets practical require-
ments on the bandwidth and measurement time necessary to
attain the desired resolution. Illustrative examples along this
line are given in Sec. IV.

C. Approximate distributions for finite-time-averaged
mutual intensity

Under the CCGR field assumption, the approximate dis-
tribution for an element of the continuous-time sample cova-
rianceSi j (T) can be obtained by combining the results of the
last section with an exact distribution recently derived by
Leeet al.13 for an element of the discrete sample covariance
Si j [N]. This approximate distribution is the complex coun-
terpart to Rice’s distribution for mean-square noise current14

and Mandel’s distribution for the intensity fluctuations of a
photon beam.15 In acoustic, optical, and radar applications, it
can be used to describe the statistical properties of finite-
time-averaged mutual intensity11 under the assumption of
cross-spectral purity. The idea is to follow the analogous
derivations of Rice and Mandel by substituting the
continuous-time SNRm for the number of independent
samplesN in the exact distribution for the discrete time mea-
surementSi j [N].

While the immediate application of Leeet al.13 was for
polarimetric synthetic aperture radar imaging under the
CCGR field assumption, their exact distributions are clearly
useful in underwater acoustic interferometry. Specifically, in
terms of its complex magnitudea i j and phasec i j , the dis-
crete sample covariance elementSi j [N] is distributed ac-
cording to13

Pa i j ,c i j
~a,c!5

2NN11aN expH 2Nar i j cos~c2u i j !

~12r i j
2 !hi j

J
pG~N!~12r i j

2 !hi j
N11

3KN21S 2Na/hi j
12r i j

2 D , ~25!

wherer i j is the magnitude andu i j is the phase of the com-
plex coherence factorn i j , andhi j5(MiiM j j )

1/2. For a suffi-
ciently large number of samplesN, which is typically greater
than ten in practice, the Gaussian asymptote forSi j [N] is
achieved. The magnitudea i j obeys the distribution13

Pa i j
~a!5

4NN11aN

G~N!~12r i j
2 !hi j

N11 I 0S 2r i j Na/hi j
12r i j

2 D
3KN21S 2Na/hi j

12r i j
2 D , ~26!

which has familiar behavior as the sensors become perfectly
correlated, wherer i j51, and uncorrelated, wherer i j50. Fi-
nally, the phasec i j is distributed according to13

Pc i j
~c!5

G~N11/2!~12r i j
2 !Nr i j cos~c2u i j !

2ApG~N!~12„r i j cos~c2u i j !…
2!N11/2

1
~12r i j

2 !N

2p
F@N,1;1/2;„r i j cos~c2u i j !…

2#,

~27!

where 2p,c i j<p. Here standard notation is used for
modified Bessel functionsI 0 , KN21, gamma functionG, and
Gauss’s hypergeometric functionF.

Under the assumption of cross-spectral purity across the
array aperture, approximate distributions for the continuous-
time sample covariance elementsSi j (T) of Eq. ~14! are now
obtained by substituting the time-bandwidth productm of
Eqs. ~20! and ~22! for N in Eqs. ~25!–~27!. The resulting
distributions approximately describe the statistics of finite-
time-averaged mutual intensity, and so extend Mandel’s ap-
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proximate distributions for the diagonal termsSii (T)
11,23de-

veloped in his analysis of photon beam fluctuations.15 How-
ever, barring the trivial case in which the elements are un-
correlated, the joint distribution for all elements of the
sample covariance apparently remains unrealized in analytic
form, as noted in Sec. I, regardless of whether the sampling
is continuous or discrete.

D. Relationship to broadband performance bounds

Besides Refs. 7–9 there are a number of papers in the
literature that examine ocean-acoustic parameter resolution
bounds for broadband measurements on a hydrophone array.
For example, Refs. 24–26 provide expressions for the corre-
sponding Fisher information matrices in terms of the wave-
guide Green function. However, the spectral summations and
integrals used in these expressions do not include the convo-
luted effects of finite time windows nor do they include any
description of temporal sampling. Exclusion of the former
effect limits the validity of these expressions to the asymp-
totic regime where the measurement’s temporal window is
so much greater than the coherence time scale that the asso-
ciated sample size must be statistically large. While no cor-
responding sample size is explicitly given to scale the Fisher
information matrix in these references, this factor may be
implicitly defined. Such a scaling is necessary according to
Whittle’s asymptotic expression for the Fisher information
matrix for a set of time series measurements with large
sample size.27 However, a danger in such asymptotic ap-
proximations is that their validity may inherently be limited
to sample populations of an enormity that cannot be achieved
in practice.

While the Fisher information matrices derived in Refs.
28 and 29 also neglect the effects of finite time windowing,
they do so by direct use of Whittle’s approximate Fisher
information matrix and explicitly include the number of in-
dependent samples available in the measurement, under the
assumption that this number is large. However, the acoustic
ray-multipath model of Refs. 28 and 29 cannot be generally
reconciled with the full-field propagation models that are
presently necessary for realistic ocean-acoustic
simulations.1–9Therefore the Fisher information matrices de-
rived in Refs. 28 and 29 are of limited practical use in ocean
acoustics.

The present analysis stands apart from these studies in
that ~1! it is not confined to the asymptotic regime but is
valid for the general case ofN>1, and~2! it can be easily
implemented with the requisite full-field propagation models
that are currently state-of-the-art in ocean acoustics. While
the focus is on narrow-band interferometry, all of the expres-
sions derived for the fully randomized field case of Sec. II
are directly applicable to broadband problems. For example,
Eq. ~12! is not limited to narrow-band processes but also
defines the Fisher information matrix for joint measurements
of a stationary broadband CCGR field, whereK is the ex-
pected covariance of the instantaneous field across the array,
N is the number of times an instantaneous field across the
array is measured independently, Eqs.~20! and ~22! deter-
mine the number of such measurements available in a given
period, and Eq.~18! gives a spectral representation for the

elements ofK , whereKi j5Mi j . Finally, it is noteworthy that
for sufficiently largeN, the general expression derived here
in Eq. ~12! is consistent with Whittle’s asymptotic formula.

III. THE RECEIVED FIELD HAS A DETERMINISTIC
COMPONENT

A. Cramer–Rao bounds for the complex sample
covariance

Let the instantaneous field measurementsf i [n] contain
a deterministic componentfDi

@n# superposed with a CCGR
componentfGi

@n#, such thatf i@n# 5 fDi
@n# 1 fGi

@n#,
which is equivalently described by the vector equation
F[n]5FD[n]1FG[n]. The random part of the field
fGi

@n# may contain a stochastic signal as well as noise. The
deterministic part of the fieldfDi

@n# is assumed to occupy a
sufficiently narrow-band about the carrier frequency that
fDi

@n#fDj
* @n# [ fDi

fDj
* is time-invariant during collection

of theN samples. It is again assumed that the field can be
spatially correlated across the array at any instant, and that
all field measurements with differing discrete-time indexes
are independent.

The expectation value of the sample covariance has el-
ements given by

Mi j5EF 1N (
n51

N

f i@n#f j* @n#G
5fDi

fDj
* 1^fGi

fGj
* &5fDi

fDj
* 1MGi j

, ~28!

where each element contains a cross termfDi
fDj
* for the

deterministic field, and another time-invariant termMGi j
for

the random field. By use of CCGR moment factoring,11 it
can be shown that the covariance of the sample covariance
has elements given by

Cqr,st~N!5EF 1N2 (
n51

N

(
m51

N

~fq@n#f r* @n# !~fs@m#f t* @m# !* G
2MqrMst*

5
1

N
~MGqs

fDr
* fDt

1fDq
fDs
* MGrt

* 1MGqs
MGrt
* !, ~29a!

which becomes

Cqr,st~N!5
1

N
~MGqs

fDr
* fDt

1MqsMGrt
* !, ~29b!

by application of Eq.~28!, so thatCqr,st(N)5Cqr,st(1)/N as
anticipated.

Therefore Eq.~10! yields the desired Fisher information
matrix upon substitution of the mean defined in Eq.~28!, and
the covariance defined in Eq.~29a! or ~29b!, where
@C21(N)] qr,st5N@C21~1!#qr,st . Clearly this Fisher informa-
tion matrix is directly proportional toN, and therefore the
Cramer–Rao lower bound for any parameter with a finite
bound forN51 must decrease asN increases.
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A more compact expression for the Cramer–Rao lower
bound

E@~ ĝi2gi !
2#>

1

N F S ]MT

]g
C21~1!

]M

]g D 21G
i i

, ~30!

is easily obtained from Eqs.~6! and~7!. With the definitions
@J# i j [ fDi

fDj
* , and@MG# i j [ MGi j

, the covariance of Eq.

~29! may be written as

C~N!5
1

N
~MGJT1MM G

T !. ~31!

This leads to the explicit bound

E@~ ĝi2gi !
2#>

1

N F S ]MT

]g
$MGJT1MM G

T %21
]M

]g D 21G
i i

,

~32!

which may be computationally expensive to implement be-
cause it requires two matrix inversions. It is noteworthy that
while the matrix ]M /]g is not invertible in general, the
bound may always be written in the form

E@~ ĝi2gi !
2#>

1

N F ]g

]M
C~1!

]gT

]M G
i i

, ~33!

if the matrix ]g/]M exists30 as it must when the problem is
properly constrained. More specifically, this bound is given
by

E@~ ĝi2gi !
2#>

1

N F ]g

]M
$MGJT1MM G

T %
]gT

]M G
i i

. ~34!

This form requires no matrix inversion, but it may be less
plausible to implement than Eq.~32! because the matrix
]g/]M is usually more difficult to determine than]M /]g for
applications in ocean-acoustic interferometry.

Due to its temporal invariance over the collection of the
N measurement samples, the deterministic componentJ is
effectively monochromatic. By definingQGi j

( f ) as the Fou-
rier transform of the mutual coherence function

^fGi
~ t1t!fGj

* ~ t !&,

wherefGi
(t) is a continuous-time measurement of the ran-

dom field component, the expected covarianceMG of the
random field component can be expressed spectrally as

MGi j
5E

2`

`

QGi j
~ f !d f , ~35!

in accord with the analysis of Sec. II B. This representation
of MG is convenient for numerical implementation of the
bound given in Eqs.~32! and~34! because many state-of-the-
art ocean-acoustic propagation models operate in the spectral
domain.

It is noteworthy that when the deterministic component
vanishes, so thatJ50,M andMG are identical. The bound
can then also be obtained from the Fisher information matrix
of Eq. ~12!, for the fully randomized field case, and is there-
fore directly applicable to broadband measurements. Con-
versely, if the random component of the field vanishes so
thatMG50, the covarianceC(N) is zero. In this case, the

bound is also zero, corresponding to perfect resolution for
any parameters that can be fully described by their depen-
dence on the mean vectorM and known constants.

B. Sample size as a function of time and coherence

The number of independent samples available in a sta-
tionary measurement period is given by the time-bandwidth
product of the received field’s random component. This
number can be obtained by substituting

^fGi
~ t1t!fGi

* ~ t !&/MGii

for g~t! in Eq. ~20!, under the assumption that the random
component is cross-spectrally pure over the array aperture.
As of yet, mutual-intensity distributions analogous to those
of Sec. II C have apparently not been derived for the case of
a deterministic signal in a CCGR field.

It is significant that the differing assumptions about the
received field made in Secs. II and III have lead to differing
Fisher information matrices. Clearly, the statistics of the
problem at hand must be evaluated before bounds can be
assigned. Otherwise, such arbitrary considerations as the
mathematical convenience of a particular formulation of the
Fisher information begin to motivate the theoretical analysis.
It is equally significant that these results are unified by the
fact that Fisher information increases linearly with the num-
ber of independent samples used to construct the sample co-
variance, which is a natural consequence of the more general
formulation given in Sec. I that follows standard statistical
methods.

IV. ILLUSTRATIVE EXAMPLES

The Fisher information matrix derived in Sec. II can be
directly applied to appropriately rescale monochromatic
bounds that already exist in the literature. For example, the
resolution bounds given in Refs. 1–5 can be made more
practical by dividing the limiting minimum mean-square es-
timation error presented by the appropriate number of inde-
pendent and stationary samples. This number can be deter-
mined by Eq.~20! or ~22! if the temporal coherence of the
received field and the stationary time of the physical pro-
cesses causing the fluctuations are known.

Knowledge of the maximum allowable sample size is
most critical when monochromatic bounds suggest inad-
equate resolution for a given parameter. Two narrow-band
examples from the literature are presented. In both examples,
the entire received field is assumed to obey CCGR statistics,
and the original Fisher information matrix from the literature
corresponds to that given by Eq.~12! for the single instanta-
neous measurement case ofN51, where the measurement
band about central frequencyf 0 is sufficiently narrow to ap-
proximate the expected instantaneous covarianceK of Eq.
~18!, whereKi j5Mi j , with a monochromatic model spec-
trum for whichS ( f )5d( f2 f 0).

A. Matched-field tomography of internal waves

First consider Ref. 5, where internal-wave parameters
are to be estimated by full-field acoustic tomography with a
controlled source signal of finite duration and bandwidth. To
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resolve a long internal wave to roughly an acoustic wave-
lengthlacou, a measurement timeT much less than an inter-
nal wave periodtint is generally required, under the assump-
tion that lacou is much less than the internal wavelength.
Specifically, the maximum measurement timeTmax should be
no greater thanlacou/cint . For a typical two-layer shallow
water waveguide with density difference to density ratio
Dr/r51023, upper layer thicknessH520 m, and gravita-
tional accelerationg, the long internal wave speed

cint5~gHDr/r!1/2 ~36!

is roughly 0.4 m/s. To obtain more than a single sample, the
minimum bandwidth should be greater thancint/lacou. The
restriction that the processing be narrow band then sets the
maximum bandwidthBmax and sample sizeNmax5TmaxBmax.
In narrow-band beamforming,Bmax must be much less than
the propagation speed divided by the array aperture. How-
ever, in narrow-band matched-field processing, the propaga-
tion range must also be considered to insure the acoustic
interference structure on the array does not vary significantly
over the measurement band. In this case, the maximum band-
width must typically be determined by numerical modeling.

For the 500-Hz carrier frequency of Ref. 5,Bmaxmust be
greater than 1/Tmax5cint/lacou50.13 Hz to obtain more than
a single sample. But parabolic equation modeling shows that
Bmax can be much greater than 0.13 Hz and still be sufficient
for narrow-band matched-field inversion over the ranges and
waveguide discussed in Ref. 5, so thatNmax can greatly ex-
ceed unity. Therefore, the monochromatic parameter resolu-
tion bounds presented in Ref. 5 may be significantly im-
proved by time or frequency averaging. Further, the
observation of that reference that certain parameters may not
be adequately resolved, even if the number of spatial
samples with unique expectation values exceeds the number
of parameters to be estimated, is not necessarily true for the
specific examples given therein ifNmax is permitted to be
greater than unity in accord with the foregoing analysis.

Finally, it is noteworthy that the CCGR fields assumed
for this example may in reality be caused by such diverse
mechanisms as high-frequency gravity-wave induced fluc-
tuation of the waveguide’s surface boundary or refractive
index, motion of the source or receiver, or an incoherent
source.

B. Target detection using ambient noise as a source
of opportunity

Now consider Ref. 3, where an object submerged in a
waveguide is to be detected using ambient noise as a source
of opportunity. In that reference, monochromatic bounds are
derived for the range, cross-range and depth resolution of the
object. But the limiting resolutions given for cross-range and
depth are extremely poor even at very short ranges from the
object. In the present context, those mean-square error
bounds become more realistic when they are divided by the
maximum allowable sample sizeNmax. For example, it may
be possible to resolve the object ifNmax is sufficiently large
that it equals the corresponding monochromatic bound of
Ref. 3 divided by the square of the object scale. However,
even within short ranges of a few object lengths, this ratio

requiresNmax to be greater than 104. WhenNmax is equated
with the time-bandwidth product of the received signal, it
becomes apparent that no combination of temporal coher-
ence and stationarity for the CCGR ocean surface noise pro-
cess will make that detection scheme practical beyond a few
object lengths. The conclusion may not be the same for
highly directional noise, however, as is noted in Ref. 31.

Therefore, it is not only the Fisher information for a
monochromatic or instantaneous measurement, but also the
coherence and stationary time scales of the random compo-
nent of the received field that are essential in determining
parameter resolution bounds in these examples. It is antici-
pated that this will be the case in many other situations of
practical interest in ocean acoustics, as no doubt many re-
searchers are already aware.

V. DISCUSSION AND CONCLUSIONS

It is currently common practice in theoretical ocean
acoustics to derive parameter resolution bounds that are ex-
clusively for a monochromatic measurement of the fluctuat-
ing field received by a hydrophone array. Often the intent of
these derivations is to compare the resulting bounds with the
resolution of numerical simulations obtained from single-
frequency models on a digital computer. It is only natural
that such comparisons should turn out favorably. This is be-
cause the single-frequency model inherently assumes zero
bandwidth which is equivalent to the absence of temporal
uncertainty—a perpetually instantaneous field structure. A
physically relevant analogy to this situation is the static but
random interference pattern or speckle found in the reflection
of a coherent laser beam from a smooth surface with
wavelength-scale roughness.32 In both of these cases, the
randomness is only exhibited by a spatial sampling. And in
both cases the resulting intensity distribution is exponential
with a standard deviation equal to the mean, implying a stan-
dard deviation for the intensity level equal to Dyer’s 5.6
dB,33 if ~1! the fields are sufficiently randomized to be sta-
tionary CCGR variables, and~2! the spatial aperture is less
than or equal to the speckle scale.

However, once finite bandwidth is introduced by either
~1! an incoherent source,~2! relative motion between source
and receiver,~3! relative motion between scatterer and
source or receiver,~4! fluctuation of the scatterer or wave-
guide boundary,~5! medium scintillation, or~6! the simple
introduction of noise, the randomness takes on a temporal
dependence. Averaging the intensity in time at any point in
space reduces the variance by the number of independent and
stationary fluctuationsN. Similarly, the intensity-level stan-
dard deviation for CCGR fields is approximated by the de-
caying quantity~10 loge)/N1/2 dB with increasing accuracy
asN increases.23,34 In this context, a monochromatic mea-
surement is like an instantaneous one in that it comprises a
single sample of a temporally fluctuating quantity. But a
single sample constitutes the least favorable sample popula-
tion as far as parameter estimation is concerned because it
yields the largest variance. This is well known in applied
ocean acoustics where parameter estimates are typically de-
rived from ensemble averages such as the complex sample
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covariance which is widely used in narrow-band matched
field processing and beamforming.

To bridge the gap between these current theoretical and
applied approaches, the Fisher information for the sample
covariance is shown to be equal to the number of indepen-
dent and stationary samples available times the Fisher infor-
mation for a single sample. Therefore,there are no practical
limits on parameter resolutionif ~1! the bound for a single
sample is finite, which is generally the case of interest,~2! a
sufficiently large population of independent samples can be
found. The parameter resolution issue then becomes one of
determining the maximum number of such samples.

A means of determining the number of independent
samples available in a given measurement period is pre-
sented. Some specific analytical results are given in terms of
the temporal coherence of the received field, which simplify
greatly under the assumption of cross-spectral purity in spa-
tial measurements across the hydrophone array. This ap-
proach has also led to a means of applying recently derived
probability distributions for the elements of the discrete
sample covariance to approximate similar distributions for
finite-time-averaged mutual intensity.

As a final point of discussion, the Cramer–Rao lower
bound is typically used to evaluate the performance of pa-
rameter estimators. From the perspective of classical estima-
tion theory,19–22 optimal estimators are unbiased and attain
this lower bound. While optimal estimators are only certain
to be found if the parameters to be estimated are linearly
related to the expectation value of the measurements, maxi-
mum likelihood estimators are asymptotically optimal for a
sufficiently large number of independent measurement
samples even if the relationship between the parameter set
and measurement expectation value is nonlinear.19–22 This
last fact is of particular significance in ocean-acoustic inter-
ferometry because the nonlinear matched field estimators
generally required may only attain optimality in the asymp-
totic limit of a large sample population. This highlights the
significance of not only including the sample size as a vari-
able but also of determining its maximum allowable value
when establishing bounds on ocean-acoustic parameter reso-
lution.
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APPENDIX: KRONECKER PRODUCTS AND THEIR
INVERSES

From Ref. 17, the Kronecker product of the double sub-
scripted vectorsA andB is given by

@A^B#qr,st[@A#qs@B# rt . ~A1!

When the inversesA21 andB21 exist, then

~A^B!215A21
^B21, ~A2!

so that

@~A^B!21#qr,st5@A21#qs@B
21# rt . ~A3!

Therefore, Eq.~9! indicates that

C~N!5
1

N
M^M* . ~A4!

Application of Eq.~A3! then yields

@C21~N!#qr,st5
1

N
@M21#qs@M*21# rt , ~A5!

under the assumptions of Sec. II A.
For notational convenience, the definitionAB[A^B is

used for the Kronecker product in the main text.
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