Parameter resolution bounds that depend on sample size
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It is currently common practice in theoretical ocean acoustics to derive parameter resolution bounds
for a monochromatic measurement of the temporally fluctuating field received by a hydrophone
array. However, a monochromatic measurement corresponds to a single random sample. In applied
ocean acoustics, single samples are seldom if ever used for parameter estimation because the
associated error can be unnecessarily large. Instead estimates are derived from ensemble averages
such as the sample covariance. To bridge the gap between these two approaches, the Fisher
Information for the sample covariance is shown to be equal to the number of independent and
stationary samples times the Fisher Information for a single sample. Theréfiere, are no
practical limits on parameter resolutioif (1) the bound for a single sample is finite, which is
generally the case of interegR) a sufficiently large population of independent samples can be
found. The parameter resolution issue then becomes one of determining the maximum number of
such samples. This number is set by physical variables that do not appear in the monochromatic or
instantaneous measurement. A means of determining this number from the temporal coherence of
the received field and the measurement time is presented.

PACS numbers: 43.30.Pe, 43.30.Vh, 43.30.Wi

INTRODUCTION may be unnecessarily large if additional independent samples
are available. But it is implicit in ocean-acoustic practice that

Recently an inconsistency has emerged between theqych additional samples are typically available because the
retical and applied ocean acoustics. A number of parametejry evidence that is necessary to establish the validity of a

resolution bounds have appeared in the literature. Many oftaistical approach must be obtained from the observation of

these bounds have analytic forms that do not allow for thg;r more than a single random sample of the measurement

possibility of ensemble averaging, including some bounds,ariaple. This same abundance of samples can then be used
given by the present author, and therefore predict unrealisti; (aquce the variance in a parameter estimate.

cally poor resolution for a given set of paramet&rsThis is To bridge the gap between theory and practice, the

if‘ direct contrast to current p_ract_ice i_n applied ocean acoUsgighar information for a measurement of the complex sample
tics where ensemble averaging is widely used to lower th%ovariance is shown to be equal to the number of indepen-

variance in parameter estimation. dent and stationary samples available times the Fisher infor-

In particular, the complex sample covariance of a sensor__.. ; .
mation for a single sample. Therefothere are no practical

array is generally the measurement from which parameterlsrnits on parameter resolutioif (1) the bound for a single
are estimated in applications of narrow-band matched field

. X X : sample is finite, which is generally the case of interé&ta
processing and beamformifigihe sample covariance is ob- fficiently large population of such samples can be found
tained by ensemble averaging instantaneous measurements h ylarg tp b lution i th F:) fd'
of a sensor array’s spatial covariance for a fixed narrow-band € parameter resolution ISsué then becomes one of de-

about a given frequency. While the averaging is usually donéermining the maximum number of independent and identi-

by sampling in the time domain, the result is equivalent tocally distributed samples available. However, this number is

averaging the same number of independent frequency conset by physical variablgs that do not appear in the instanta'-
ponents across the narrow-band of the measurement. As &§0US or monochromatic measurement, and consequently, is
estimator of the true covariance, the sample covariance h4¥t accounted for in the monochromatic bounds of the
obvious advantages over an instantaneous measurement Ipesent ocean-acoustics literattifé To remedy this situa-
cause its variance can be linearly reduced with the number d¢fon. & means of determining the maximum number of inde-
independent and stationary samples in the estimate. pendent samples available in a given stationary measurement
However, many theoretical parameter resolution bound®eriod is presented.
for underwater acoustics collapse the finite bandwidth of the It is notable that in their matched field treatments of
sample covariance to a single-frequency or monochromatiroadband signals, Sohjas well as Fawcett and Mararida
measure~> But a monochromatic measurement is statisti-have shown that the optimal position resolution of a target in
cally similar to an instantaneous one in the sense that each waveguide can generally improve by increasing the dura-
constitutes only a single independent sample of a temporall{ion of the received signal, if other parameters such as the
fluctuating quantity. This is because the time-bandwidthsignal bandwidth and noise characteristics are held fixed.
product of a monochromatic measurement, like that of arThis is consistent with well-established radar range-
instantaneous one, is by definition unity. Clearly, the vari-estimation bounds derived for targets in free spda&ppar-
ance of a parameter estimate derived from a single samplently, the implication of these results has not been fully re-
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alized in ocean-acoustic modeling of narrow-band signals.  Two illustrative examples that have a significant impact
Therefore, it is the aim of the present paper to explicitlyon the interpretation of published literature are given in Sec.
show how optimal parameter resolution is increased by avlV. These are for matched field tomography of internal
eraging independent fluctuations of the measurement variwaves, and target detection using ambient noise as a source
able. of opportunity.

In Sec. |, a general expression is derived for the Fisher

information matrix contained in a measurement of the com/: FISHER INFORMATION FOR THE COMPLEX

plex sample covariance. This is done without specific knowI-SAMPI‘E COVARIANCE
edge of the probability distribution of the measurement. Two ~ The random vector®[n] contains the instantaneous
practical cases are examined in Secs. Il and Ill, respectivelycomplex fields#;[n] measured by sensors:1,2,3...,Ng, at
First, the entire received field is assumed to be fully randomdlSCfet? timen. TO permit spatial coherence across the array
ized. Then, the signal is allowed to have a nonfluctuatingdt any instann, it is assumed that any sampjg[n] may be
component. correlated with anyp;[n]. However, all field samples with

In the first case, it is assumed that the instantaneoudiffering discrete-time indexes are assumed to be indepen-
fields received by the sensor array are circular Comp|e)dent. For the intended application in interferometry, all fields
Gaussian randorfCCGR) variabled! so that both the signal are assumed to occupy a narrow band about the same carrier
and noise components fluctuate over temporal samples. Thiggquency such that the bandwidth is much less than the
is a standard assumption implicit in the derivation of manyPropagation speed divided by the array aperture. More pre-
ocean acoustics parameter bouhds,but is also well cise constraints on the bandwidth for application in matched
founded in a variety of other fields such as optics andield processing are discussed in Sec. IV. A specific exten-
radart*!? It is additionally assumed that measurementsSion to broadband applications is provided for a fully ran-
across the array may be correlated at any instant, but aflomized field in Sec. II. . _ _
discrete samples are independent and stationary over time. The complex sample covariance is then defined as

The Fisher information matrix for the sample covariance is 1 N

then found to equal the product of the Fisher information g N]= N > ®[n]®"[n], 1)
matrix for an instantaneous measurement of the field across n=1

the array and the number of independent and stationaryhere [N] is a Hermitian matrix containing the elemental
samples. Consequently, the Fisher information matrix ofneasurement statisti;[N], for i,j=1,2,3... Ng, where
Refs. 1-5 is found to only be valid for the special case of & denotes complex conjugate transpose. Here, the instanta-
single monochromatic measurement. neous mutual intensity samples®[n]®"[n] are assumed

Previously derived monochromatic parameter resolutiono be identically distributed over time index Practical sce-
bounds; therefore, are reduced in direct proportion to thenarios for which this assumption is valid are investigated in
available number of independent and stationary sampleSecs. Il and .
when finite bandwidth is allowed. An expression for this The complex vectolW of dimensionN?% is formed by
number is given in terms of the temporal coherence of th&tacking the columns o8, so that the elements oW are
received field and the measurement time. Appropriately subgiven by W;;=S;[N], for i,j=1,2,3...Ny, where the
stituting this expression into an analytic formula recently de-double subscripted vector element follows notation discussed
rived by Leeet al!® for the exact distribution of a discrete- in the Appendix for the Kronecker produttlt is notewor-
sample-covariance element yields a new approximatehy that in this contexWT=W*. The statistics oW are
probability distribution for an element of the continuous-time characterized by mean vectbt=(W), with elementsM
sample covariance. This approximate distribution is the comand covariance matri€(N), with elements
plex counterpart to Rice’s distribution for mean-square noise _ *
current* and Mandel's distribution for the intensity fluctua- Cij 1 (N) = (W = Mij) (Wi =Mua)*),
tions of a photon beart?. In optical applications, it can be wherei,j,k,1=1,2,3... Ng . The dependence of the covari-
used to describe the statistical properties of finite-time-ance C(N) on the number of independent and stationary
averaged mutual intensityunder the assumption of cross- samplesN is explicitly indicated for future reference.
spectral purity:® The vector g contains the parametersgy, for

In the second case, it is assumed that the field receiveli=1,2,3...,Ng. These parameters are assumed to be nonsto-
by the sensor array contains a deterministic signal compochastic but presumably can be estimated from the stochastic
nent amid an additive CCGR component. It is shown that thélataW.

Fisher information matrix for this sample covariance is dif-  While the general distribution fow remains unknown
ferent from the fully random case but is directly proportionaland may be unrealizable in compact fothit is assumed to

to the number of independent samples available, as antichave a Gaussian asymptote for lafye This Gaussian as-
pated. Optimal parameter resolution, therefore, can again hgmptote can be written as a conditional probability, tr
significantly improved by averaging identically distributed giveng, by the relation

instantaneous covariance samples. The number of indepen- 1 Tm—1/ ..

dent samples available is again given in terms of the tempopyy|g)~ exp—[W— M(g)g C HgN)[W-M(g)]} .
ral coherence of the random component of the received field ((2m)Ne|C(g;N)|)/2

and the measurement time. (2)

ijo
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To be consistent with the Kronecker product and the fact that T IM

both W and M have double subscripts and contain all the ~ J;j(9)=N e Cc (1) 790 (6)
elements of corresponding Hermitian matrices, the algebra is ' !

akin to vectot®? rather than complex vecttr®° algebra.

Specifically, the transpose in the exponent is just the transAgain, this expression is exact for the general casd®fl.
pose and not the Hermitian transpose, and the factors 2 artelirther, application of Eq6) is not limited to the Hermitian
1, as well as the powey are appropriately designated in Eq. sample covariance measurements of @g,. but is valid for

(). any ensemble average Nfindependent and identically dis-
For estimation of the parametegsthe elements of the tributed samples that has asymptotically Gaussian statistics
Fisher information matrixJ(g) are defined b¥{ for N sufficiently large, as follows from the referenced works

of Fisher and Rao for real measurement vectors.

The direct proportionality to sample size exhibited in
Eq. (6) may seem obvious because Fisher information is ad-
ditive for independent sampfEs’®?2and is not lost when
Since the exact form of the distribution f&(W/|g) is un-  such independent identically distributed samples are
known, it seems that the Fisher information matrix for thecombined®as in Eq.(1). However, even with these facts, the
sample covariance cannot be determined directly from Egpreceding analysis side-stepped the difficulty in first obtain-
(3). However, there is an alternative approach. ing an expression for the joint distribution of the instanta-

It is well established that ify is a function of theN,  neous covariance elements, which may not have an analyti-
parameters in vecta that have a known Fisher information cally realizable form, and then substituting this expression
matrix J(a), the Fisher information matri3(g) can be deter- into Eq.(3).

2

34(9=—E 5955 1" PWIO)|. ®

mined fromt®2° Equation (6) represents the Fisher information for an
arbitrary population ofN independent samples, which may

iga) ag(a)T] ! be collected over time or space, so long as the statistics are
Jo@)=|—5 3 (@ — : 4 ergodict! If the statistics are not ergodic over the entire

population, the expression must be modified so as to add an

Suppose the parametaiis the mean ofV such thata=M. additional term of the form of Eq6) for each ergodic sub-
Then becaus®(W|a) is asymptotically Gaussian for suffi- population with its own mean, covariance and sample size. If
ciently largeN, it is also well established that the inverse the measurements are restricted to temporal samples that are
Fisher information matrixJ"(M), in an estimate of the not stationary, the expression must again be modified so as to
meanM, is equal to the covariance matri@(N) for all ~ add an additional term of the form of E¢G) for each sta-
N=12° Therefore, substituting/! for a and thenC(N) for tionary subpopulation. The merit of this approach becomes
J"XM) in Eq. (4) yields the Fisher information matrix questionable if the parameters to be estimated vary signifi-
J(g(M)) for all N=1. cantly during what was presumed to be a stationary measure-
This same result can also be obtained by loosely follow-ment. For simplicity, from hereon the stochastic component
ing Fisher's use of the central limit theorem in his initial of the field received at a given hydrophone is assumed to be
derivatiorf* of what later became known as Fisher informa-Stationary in the sense that its temporal coherence depends
tion. First note thatC(N)=C(1)/N must hold due to the only upon the time difference between any two measure-
independence and stationarity of thesamples in the sample ments.
covariance of Eq(1). Substituting the Gaussian asymptote It is useful to make the dependence Nrexplicit in the
of P(W/|g) into the right-hand side of E¢3) then yields the ~ Fisher information matrixJ(g;N) so that the additive prop-

well-known resuft® erty of the information in independent identically distributed
samples is clearly exhibited vii(g;N)=NJ(g;1). Then the
1 _c(l) o ac(n) MT oM Cramer—Rao lower bound®is given as
2 M= 70, NS CT g
. _ 1
©) E[@-) 1= Mg =g 0 @D, (@)

which in the present case approacligsg) asN increases.

Clearly, only the term involving partial derivatives oA

with respect to the parameters to be estimated survivéé as which unambiguously shows that the limiting mean-square

becomes sufficiently large. But the resulting asymptotic ex-estimation error for any unbiased estimgteof parameten;

pression forJ;;(g) is valid for all N=1 because the Fisher can be made arbitrarily small {f) a sufficiently large popu-

information for the sum ofN independent and identically lation N of independent and identically distributed samples

distributed joint measurements equblgimes the Fisher in- can be found, an?) theN=1 single-sample bound is finite.

formation for a single such measuremé&Eor example, this In summary, Eqs(6) and(7) bound the minimum error

is why J(M)=NC~%(1) must hold. in estimating parameters from the averagéNoihdependent
The general Fisher information matri¥(g) for the and identically distributed measurement samples, and exhibit

sample covariance vectd¥ can then be written element by a well-known inverse dependence on sample $iz&22

element as Some specific cases are how considered.
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Il. THE RECEIVED FIELD IS FULLY RANDOMIZED Fisher information matrix foN independent and identically
distributed joint measurements of the instantaneous field
®[n] across the array. This last observation provides a use-
_ _ ) ful confirmation of the foregoing derivation because it en-
Itis assumed that the instantaneous field samp|gs]  aples Eq.(12) to be immediately obtained from the well-
are CCGR variables regardless of the relative amplitude benown form of the Fisher information matrix for a fully
tween the signal and noise components. It is again assumegndomized zero-mean complex Gaussian measurement

that the field can be spatially correlated across the array fector® and the additive property of Fisher information for
any instant, and that all field measurements with diﬁeringindependent measurememi€0.22

A. Fisher information for the complex sample
covariance

discrete-time indexes are independent. . The Fisher information matrix used in Refs. 1-5 for a
The expectation value of the sample covariance has elnonochromatic measurement of the temporally fluctuating
ements given by field received by a hydrophone array is only valid for the

1 N special case whehl=1 and the measurement is of suffi-
N E ¢i[n]¢),-*[n]} =<¢i[n]¢f[n]>, (8) ciently narrow bandwid'gh. As noted in the.introduction, how-
n=1 ever, a single sample is the worst possible sample popula

whereM. is independent of time. By use of CCGR momenttion- Therefore, a Cramer—Rao lower bound derived for

factoring?! the covariance of the sample covariance is found\ =1 has questionable relevance as a “fundamental” bound
to have the elements on parameter resolution because it gives st possible

parameter resolution for thevorst possible number of

Mij:E

1 NN samples. The ramifications of E(L2) on specific results in
CarstN)=E| 2 Zl 21 (¢alnl¢y [n]) (L m]gt [m])* the literature are fleshed out in Sec. IV. An evaluation of the
e number of independent samples available in a given time
~MqgME period under the CCGR field assumption is presented next.
=N MasMr - (9)

The Fisher information matrix of Eq6) can be written as ) ] )
B. Sample size as a function of time and coherence

Ne Ng Ng No z?[MT]
qr

Jij(g)=NE > > >

— AMIst An expression for the maximum number of independent
q=1r=1s=1{=1  d0;

ag; - samples available in a stationary measurement period is now
(100 derived. This is given in terms of the temporal coherence of
Following the Appendix, the identity [C™(1)]qr the received field and the measurement time. The ggneral
=[M . dM* 1], is employed. By also noting that approach is analogous to that used by Kiand Mgndél
M =[M1],q and[M* Y, =[M %], the Fisher informa- for related problems. In loose terms, the concept is to deter-
tion matrix can be written as mine the number of times the received field is expected to
fluctuate independently during the given measurement pe-
M1 riod. This is achieved by inspection of the signal-to-noise
20, ratio (SNR) of the measurement. Here the SNR is defined as
! the squared-mean to variance ratio. For the discretely
(11) sampled case, the SNR of a sample covariance element is

Cil( 1)]qr,st

Ny Ng Ng Ng
M,
q

3(@=N> > > > ['\/l’l]n&—g'[Mfl]qS

q=1r=1 s=1 t=1

Returning again to more familiar double subscripted matrix

notation, let the expected covariance of an instantaneous SNR(S;[N]}= =
sample of the field received across the array be denoted by Cijij(N)
the matrix K=(®[n]®"[n]), which when converted to a

double subscripted vector by stacking its columns yidldls ~WhereM; is positive semidefinite and equal to the expected
For example, the relationship between the elements ahd ~ intensity at sensori. Here the number of independent

M is given byK;;=M; . Equation(11) can then be written samplesN is equal to the SNR for a diagonal element of the
as sample covariance, such that SNR[N]}=N. This is be-
causeS;[1] has an expectation value that equals its standard
3 (@ N)= KK deviation under the CCGR field assumption, and MlI
(GN)=Ntr K™ — K™% — . (12 ) ) . o
d9; 99; samples are independent and identically distributed.
. . Analogously, the number of independent samples avalil-
Because the signal and noise are assumed to be fully ran,, . : . T :
. ) T . able in a continuous time measurementgfis given by its
domized, absolute phase information is lost between inde: . .
. . : SNR. To show this, the sample covariance of BEg.can be
pendent temporal samples. In this case, there is no difference_ . . .
) . . X ; equivalently written as a continuous temporal average
between the Fisher information for a single instantaneous
sample®[n] of the field across the array and that for a
single instantaneous sampl n]®"[n] of the correspond- S(T)= 1
T

ing mutual intensities. Therefore E(L2) also defines the

M2 M2

N :
MiiMj;

(13

TI2
d(t)PH(1)dt, (14
T/2
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where the received field®(t) are again assumed to be nar- whereR;;(T) andl;;(T) are found to be uncorrelated. Here,
row band. For the continuous case, the SNRSp{T) is  w is defined by

defined as .
(Rij(T)?+(1;;(T))? pea f A(I)Iy(ﬂlzdr} : (20
SNR(S;(T)} =5 - 5 , (15) TJ) AT
IR (M ™ T135(M

and the triangle function is defined as
where R;j(T)=Re{S;(T)}, 1(T)=Im{S;(M)}, o (n) is
the variance oR;;(T), anda,zijm is the variance of;;(T). It
is not difficult to show that(R;;(T))=ReM;;} and A(7)=0, elsewhere. (21b)
(i (M) =Im{M;;}.

Expressions for the variances can also be obtained, buih terms of the spectral density”(f), which is the Fourier
with more difficulty. First, it is useful to employ some defi- transform of y(7), a useful spectral representation faris
nitions from statistical optics. The complex degree ofgiven by
coherenct is defined as

A(T)=1—|T|, for |T|$1, (214

-1

. 1o 1 * o [SINAT(E=E)\2
i (1) =(i(t+ 1) o] (1)) (M;iM;;) 74, (16  wu=|72 _x_y(f),y (") A=ty df* df| . (22
and the complex coherence facfois defined as
By appropriate substitution of the means and variances
vij=7ij(0)=M;j /(MM 17 Y approp

given above, Eq(15) yields the desired SNR for the con-
Because the complex degree of coherempgér) only de-  tinuous measurement case
pends on the time difference the fields¢,;(t) must be sta- )
tionary over the measurement peribdor this analysis to be SNR(S;; (T)}= pe|w;j|*.

valid. . ) . Therefore, the number of independent samples available in
By defining the normalized cross-spectral density,ntinyous measurement tirffeis x, wherex need not be
7j(f) as the Fourier transform of trl‘g complex degree Ofiscrete but must be greater than or equal to one, as is evi-
coherencey;; (7), andQ;;(f) =(M;M;;) ™77 (f) asthe un-  yone by inspection of Eqg20) and (22). It is important to
normalized cross-spectral density which is the Fourier transzgjize that if the assumption of cross-spectral purity cannot
form of the mutual coherence functiom;(t + 7) ¢} (1)), the o made, the number of independent samples {S\E)}
expectation value of the sample covariance can be expressgd) |4 not necessarily be identical across all sensarfsthe
as array, but would be given by Eq&0) or (22) with y(7) and
o A (f) replaced byy;;(7) and.;(f), respectively.
Mi; :f Qij(f)df. (18 The continuous sample sizecan also be interpreted as
o the time-bandwidth product of the cross-spectrally pure field
This spectral representation is useful for computing theeceived by the arra 423 For example, by defining the co-
Fisher information matrix of Eq(12) with state-of-the-art herence time scale as
ocean-acoustic propagation models.
For illustrative purposes, it is now assumed that the :Jm ly(7)[2 dr= Jw |2 df (24)
measurements across the array are cross-spectrally*pure. ° J-= — ’
The mathematical expression of cross-spectral purity is ) i ,
%j_(T) = v;;¥(7), wherey(7) :.y”(T), for all sensors an<_jj. whgrg 1_/fc measures the pandW|dth of field fluctuations over
This means that the normalized cross-spectral density me&" infinite time window, either Eq20) or (22) can be used
sured between any two spatially separated sensors is th@ Show that asl becomes much greater thag, p ap-
same as the normalized spectral density measured at any sdtioaches/7.. Specifically, the triangle function approaches
sor in the array. While this condition is most easily satisfieg® constant in Eq(20) and the sinc-squared function ap-

for narrow-band measuremerfayhich are most commonly Proaches a delta function in EQ2). Therefore, the effect of
used in ocean-acoustic interferometryjt is also applicable the finite measurement window on the bandwidth of the re-

to broadband processes. ceived fieldB= u/T becomes negligible in this limit so that
With these definitions, expressions for the variances of€ time-bandwidth produgt grows linearly with measure-

the real and imaginary parts of the sample covariance eldnent timert. _ . _

ments can be obtained by extending some results presented !N the opposite extreme, inspection of Eg0) or (22)

by Goodmart! in his discussion of the properties of mutual indicates that as. becomes much greater than the time-
intensity, to more the general forms bandwidth producjx approaches unity and can no longer be

approximated byT/7.. This is because the coherence time

(23

MiiMj; scale of EQ.(24) is independent of the temporal window
2 _ MiiMjj INCIRRT:
TRiNT T2, (2|Re(wij)[*= v |*+ 1), (199 sssociated with a specific measurement. Here, the complex
degree of coherence behaves as a constant ifBgand the
M::M:; . S .
2 _ ViVj N2 (.12 spectral density behaves as a delta function in(2g. This
TMT T2, (2[im(wi) "=+ 1), (199 limiting case describes both the monochromatic and the in-
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stantaneous measurement, for which the number of indepen- While the immediate application of Lest al® was for
dent samples must be unity, as is well knotWith regard  polarimetric synthetic aperture radar imaging under the
to the introduction of this paper, the foregoing asymptoticCCGR field assumption, their exact distributions are clearly
analysis provides a mathematical basis for many of thaiseful in underwater acoustic interferometry. Specifically, in
points raised concerning monochromatic measures anrms of its complex magnitude;; and phasej;; , the dis-
sample size. Specifically, the monochromatic measurementete sample covariance elemegf[N] is distributed ac-

is the subset of instantaneous measurements for which therding td®

spectral density”’(f) not only behaves as a delta function in

Eq. (22) becauser.>T, but actually is a delta function

S (f)=6(f—fy) in the sense that there is Ao for which

7.>T is not true. Therefore, it is important to realize that a 2NN*+1N exp[
narrow-band measurement is not necessarily monochrqpa” g ()=
matic, but a monochromatic model is often sufficient to ap- """
proximate the interferometric processes involved in an in-

stantaneous narrow-band measurement. However, an X KNl(
instantaneous broadband measurement must generally be de-

scribed by its full spectrum¥”(f) in any modeling effort

even though its time-bandwidth product is unity.

Itis useful to now consider the influence that the SNR ofwherep;; is the magnitude and;; is the phase of the com-
S;;(T) has on estimators found in ocean-acoustic beamformplex coherence factar;; , andh;; =(M;; M“-)l’z. For a suffi-
ing and matched field processing, since these rely upon irziently large number of samplég which is typically greater
tersensor coherence. For such estimators, (Eg). implies  than ten in practice, the Gaussian asymptote SofN] is
that as the intersensor measurements become less correlatethieved. The magnitude;; obeys the distributi
under decreasinb»ij|, longer averaging times are necessary
to achieve the same resolution for a given parameter. For
practical considerations, the temporal augmentation neces- N1 N
sary for an off-diagonal element Bj to attain the SNR that P (a)= AN""a | (ZpijNa/hij)
a diagonal element achieved in tinfeis expected to be & T(N)(1-phy "% 1-pF
(TI]v;j|>~T), whenT> 7.

Finally, the minimum sample size necessary, but not al- % KN_1<
ways sufficient, to achieve a fixed mean-square error toler-
ance in a parameter estimate can be equated with the ratio of
the Cramer—Rao lower bound for a single sample to the error
threshold. This minimum value then sets practical requiréyhich has familiar behavior as the sensors become perfectly
ments on the .bandW|dth gnd measurement time necessary {grrelated, wherg;; =1, and uncorrelated, wheg =0. Fi-
attain the desired resolution. lllustrative examples along thig,q|ly, the phasey; is distributed according {8
line are given in Sec. IV.

2Nap;; cog ¢— 9ij)]

(1-p{)hij
al'(N)(1-pi)hij
2N6t’/h”>

l—pizj

(29

2Na/h” )
: (26)

a2
1-pj

I'(N+1/2)(1-pf)Npij cogyp—6;))

C. Approximate distributions for finite-time-averaged P, ()=

mutual intensity 1 2\aT(N)(1— (pjj cog — 6;;))?)N+112
Under the CCGR field assumption, the approximate dis- (1_Pi2j)N )

tribution for an element of the continuous-time sample cova- R FIN,1;1/2)(p;; cod ¢— 6;5))°],

rianceS;;(T) can be obtained by combining the results of the

last section with an exact distribution recently derived by (27)

Leeet all® for an element of the discrete sample covariance

Sj[N]. This approximate distribution is the complex coun-

terpart to Rice’s distribution for mean-square noise cutfent where — < Yij<m. Here standard notation is used for
and Mandel’s distribution for the intensity fluctuations of a modified Bessel functionk,, Ky-, gamma functiord’, and
photon beant® In acoustic, optical, and radar applications, it Gauss’s hypergeometric functidh

can be used to describe the statistical properties of finite- Under the assumption of cross-spectral purity across the
time-averaged mutual intenstfyunder the assumption of array aperture, approximate distributions for the continuous-
cross-spectral purity. The idea is to follow the analogougime sample covariance elemeigg(T) of Eq. (14) are now
derivations of Rice and Mandel by substituting theobtained by substituting the time-bandwidth productof
continuous-time SNRu for the number of independent Egs. (20) and (22) for N in Egs. (25—(27). The resulting
samples\ in the exact distribution for the discrete time mea- distributions approximately describe the statistics of finite-
surementS;;[N]. time-averaged mutual intensity, and so extend Mandel's ap-
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proximate distributions for the diagonal terig(T)***de-  elements oK, whereK;; = M;; . Finally, it is noteworthy that
veloped in his analysis of photon beam fluctuatibhslow-  for sufficiently largeN, the general expression derived here
ever, barring the trivial case in which the elements are unin Eq. (12) is consistent with Whittle’s asymptotic formula.
correlated, the joint distribution for all elements of the

sample covariance apparently remains unrealized in analytic

form, as noted in Sec. |, regardless of whether the sampling, +1,c RECEIVED FIELD HAS A DETERMINISTIC
is continuous or discrete. COMPONENT

D. Relationship to broadband performance bounds A. Cramer—Rao bounds for the complex sample

Besides Refs. 7-9 there are a number of papers in thgPvarnance
literature that examine ocean-acoustic parameter resolution | et the instantaneous field measuremepa] contain
bounds for broadband measurements on a hydrophone array deterministic componemDi[n] superposed with a CCGR
For ex_amplg, Ref_s. 24—2§ providg expressions for the Com’componentqﬁei[n], such thatg;[n] = ¢Di[“] + ¢Gi[n],
sppndmg Fisher njformatlon matrices in terms of thg Waveiyhich is equivalently described by the vector equation
gwde Green fupcnon. However,. the spectra] summations an [n] =®p[n] +®g[n]. The random part of the field
integrals used n thes? expressions do not mclugje the conv%-G_[n] may contain a stochastic signal as well as noise. The
luted effects of finite time windows nor do they include any * i~ = =~ "~ i .
description of temporal sampling. Exclusion of the formerd€terministic part of the fiele [n] is assumed to occupy a
effect limits the validity of these expressions to the asymp-Sufficiently narrow-band about the carrier frequency that
totic regime where the measurement’'s temporal window is?p[n]¢p,[N] = &p, 5, is time-invariant during collection
S0 much greater than the coherence time scale that the assg-the N samples. It is again assumed that the field can be
ciated sample size must be statistically large. While no corspatially correlated across the array at any instant, and that
responding sample size is explicitly given to scale the Fisheg@ll field measurements with differing discrete-time indexes
information matrix in these references, this factor may beare independent.
implicitly defined. Such a scaling is necessary according to ~ The expectation value of the sample covariance has el-
Whittle’s asymptotic expression for the Fisher information€ments given by
matrix for a set of time series measurements with large
sample sizé€’ However, a danger in such asymptotic ap- —E
proximations is that their validity may inherently be limited .
to sample populations of an enormity that cannot be achieved . . .
in practice. =¢p,#p, t(be,¢5)= ¢p,95,+ Mg, (28)
While the Fisher information matrices derived in Refs. . N
28 and 29 also neglect the effects of finite time windowing, Where €ach element contains a cross tefg)¢p, for the
they do so by direct use of Whittle’s approximate Fisherdeterministic field, and another time-invariant telmr@ij for
information matrix and explicitly include the number of in- the random field. By use of CCGR moment factorthgt
dependent samples available in the measurement, under than be shown that the covariance of the sample covariance
assumption that this number is large. However, the acoustibas elements given by
ray-multipath model of Refs. 28 and 29 cannot be generally
reconciled with the full-field propagation models that are 1 N
presently  necessary for realistc  ocean-acoustiCarstN)=E| {2 >, mE:l (¢[n]pr[n]) (L mlgy [m])*
qr

1 N
N 2, #lnlg}in]

N

n=1
simulations'~® Therefore the Fisher information matrices de-
rived in Refs. 28 and 29 are of limited practical use in ocean —MgMg
acoustics. 1
The present analysis stands apart from these studies in =N (Me, #b, %o, + o, 85 MG, *Mc MG ), (294

that (1) it is not confined to the asymptotic regime but is

yalld for the ge-neral case .clﬂzl, arjd(Z) it can pe easily which becomes

implemented with the requisite full-field propagation models

that are currently state-of-the-art in ocean acoustics. While 1

the focus is on narrow-band interferometry, all of the expres- ~ Cqr,stN) = (M 64?0, $0, T MgMG ), (29b
sions derived for the fully randomized field case of Sec. Il

are directly applicable to broadband problems. For exampleby application of Eq(28), so thatCq, (N) =Cy, s(1)/N as
Eq. (12 is not limited to narrow-band processes but alsoanticipated.

defines the Fisher information matrix for joint measurements  Therefore Eq(10) yields the desired Fisher information
of a stationary broadband CCGR field, whefeis the ex-  matrix upon substitution of the mean defined in E28), and
pected covariance of the instantaneous field across the arrajpe covariance defined in Eq298 or (29b), where
N is the number of times an instantaneous field across thECfl(N)]qrystzN[Cfl(l)]qryst. Clearly this Fisher informa-
array is measured independently, E¢R0) and (22) deter-  tion matrix is directly proportional tdN, and therefore the
mine the number of such measurements available in a giveBramer—Rao lower bound for any parameter with a finite
period, and Eq(18) gives a spectral representation for the bound forN=1 must decrease &¢ increases.
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A more compact expression for the Cramer—Rao loweibound is also zero, corresponding to perfect resolution for
bound any parameters that can be fully described by their depen-
dence on the mean vectbt and known constants.

R o L[{omT oM\t
ELGi—9)° 1= (9—9(3 (1) Tl : (30
ii B. Sample size as a function of time and coherence
is easily obtained from Eq$6) and (7). With the definitions The number of independent samples available in a sta-
= _ * — 1
[E]ij = ¢o, #p,, and[M¢lij; = Mg, , the covariance of EQ.  tionary measurement period is given by the time-bandwidth
(29) may be written as product of the received field’s random component. This
1 number can be obtained by substituting
=— (MgE™+MM ).
CIN)=§ (Mc="+MM ) 3D ($o,(t+7) 65 (D)Mg,
This leads to the explicit bound for (7) in Eq. (20), under the assumption that the random
11{oMT OM )\ 1 component is cross-spectrally pure over the array aperture.
E[(§i—g)?]= N “0— {MGET+MM {} 71 (9—) } , As of yet, mutual-intensity distributions analogous to those
9 9 i of Sec. Il C have apparently not been derived for the case of

(32 a deterministic signal in a CCGR field.
which may be computationally expensive to implement be- It is significant that the differing assumptions about the
cause it requires two matrix inversions. It is noteworthy thatreceived field made in Secs. Il and Il have lead to differing
while the matrix dM/dg is not invertible in general, the Fisher information matrices. Clearly, the statistics of the
bound may always be written in the form problem at hand must be evaluated before bounds can be
assigned. Otherwise, such arbitrary considerations as the
(33y  mathematical convenience of a particular formulation of the
Fisher information begin to motivate the theoretical analysis.
It is equally significant that these results are unified by the
fact that Fisher information increases linearly with the num-
ber of independent samples used to construct the sample co-
variance, which is a natural consequence of the more general
formulation given in Sec. | that follows standard statistical
methods.

Jg ag’

am “H am)

R 1
E[(Gi—0)?]= N

if the matrix dg/dM exists® as it must when the problem is
properly constrained. More specifically, this bound is given

by

1

) ag’
EL(6,- 921> 5 N

&g e T T
W{MG,—. +MM G} mL. (34

This form requires no matrix inversion, but it may be I_esslv_ ILLUSTRATIVE EXAMPLES

plausible to implement than Eq32) because the matrix

dg/oM is usually more difficult to determine that/dg for The Fisher information matrix derived in Sec. Il can be

applications in ocean-acoustic interferometry. directly applied to appropriately rescale monochromatic
Due to its temporal invariance over the collection of thebounds that already exist in the literature. For example, the

N measurement samples, the deterministic compoBeig  resolution bounds given in Refs. 1-5 can be made more

effectively monochromatic. By definin@g, (f) as the Fou-  practical by dividing the limiting minimum mean-square es-

rier transform of the mutual coherence function timation error presented by the appropriate number of inde-
. pendent and stationary samples. This number can be deter-
(dg,(t+ T)¢Gj(t)>, mined by Eq.(20) or (22) if the temporal coherence of the

received field and the stationary time of the physical pro-
cesses causing the fluctuations are known.
Knowledge of the maximum allowable sample size is
most critical when monochromatic bounds suggest inad-
o equate resolution for a given parameter. Two narrow-band
Mg, = f_wQGij(f)df, (35  examples from the literature are presented. In both examples,
the entire received field is assumed to obey CCGR statistics,
in accord with the analysis of Sec. Il B. This representationand the original Fisher information matrix from the literature
of Mg is convenient for numerical implementation of the corresponds to that given by E@.2) for the single instanta-
bound given in Eqs(32) and(34) because many state-of-the- neous measurement caseN 1, where the measurement
art ocean-acoustic propagation models operate in the spectighnd about central frequendy is sufficiently narrow to ap-
domain. proximate the expected instantaneous covaridtcef Eq.
It is noteworthy that when the deterministic component(18), where Kij=Mj;, with a monochromatic model spec-
vanishes, so th&&=0, M andM are identical. The bound trum for which.(f)= &(f —f,).
can then also be obtained from the Fisher information matri
of Eq. (12), for the fully randomized field case, and is there-
fore directly applicable to broadband measurements. Con- First consider Ref. 5, where internal-wave parameters
versely, if the random component of the field vanishes sare to be estimated by full-field acoustic tomography with a
that M¢=0, the covarianc&€(N) is zero. In this case, the controlled source signal of finite duration and bandwidth. To

where d’ei(t) is a continuous-time measurement of the ran-

dom field component, the expected covariamtg of the
random field component can be expressed spectrally as

)%\. Matched-field tomography of internal waves
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resolve a long internal wave to roughly an acoustic waverequiresN,,, to be greater than 0WhenN,,,, is equated
length ]\ 5cou @ Measurement timeé much less than an inter- with the time-bandwidth product of the received signal, it
nal wave periodr,, is generally required, under the assump-becomes apparent that no combination of temporal coher-
tion that A, IS much less than the internal wavelength. ence and stationarity for the CCGR ocean surface noise pro-
Specifically, the maximum measurement tifg,, should be  cess will make that detection scheme practical beyond a few
no greater tham,.,{Ci.- For a typical two-layer shallow object lengths. The conclusion may not be the same for
water waveguide with density difference to density ratiohighly directional noise, however, as is noted in Ref. 31.

Aplp=10"3, upper layer thicknessi=20 m, and gravita- Therefore, it is not only the Fisher information for a
tional acceleratiory, the long internal wave speed monochromatic or instantaneous measurement, but also the
coherence and stationary time scales of the random compo-

Cin=(gHAp/p) 12 (36) y P

nent of the received field that are essential in determining
is roughly 0.4 m/s. To obtain more than a single sample, th@arameter resolution bounds in these examples. It is antici-
minimum bandwidth should be greater thef/A,.o,,. The  pated that this will be the case in many other situations of
restriction that the processing be narrow band then sets thsractical interest in ocean acoustics, as no doubt many re-
maximum bandwidttB ., and sample siz8l, .= T maBmax- searchers are already aware.

In narrow-band beamformind ., must be much less than

the propagation speed divided by the array aperture. How-

ever, in narrow-band matched-field processing, the propaga‘. DISCUSSION AND CONCLUSIONS

tion range must also be considered to insure the acoustic
interference structure on the array does not vary significantl
over the measurement band. In this case, the maximum bané
width must typically be determined by numerical modeling.

It is currently common practice in theoretical ocean
coustics to derive parameter resolution bounds that are ex-
clusively for a monochromatic measurement of the fluctuat-
ing field received by a hydrophone array. Often the intent of

For the 500-Hz carrier frequency of REf'EB.'“aXmUSt be these derivations is to compare the resulting bounds with the
greater than I,,,,=Cint/Aacoi=0.13 Hz to obtain more than . : : . : .
resolution of numerical simulations obtained from single-

a single sample. But parabolic equation modeling shows th tre Lency models on a diaital computer. It is onlv natural
Bmax €Can be much greater than 0.13 Hz and still be sufficien g y g puter. y

N . at such comparisons should turn out favorably. This is be-
for narrow-band matched-field inversion over the ranges an . .
. : . Cause the single-frequency model inherently assumes zero
waveguide discussed in Ref. 5, so tiNgt,, can greatly ex-

ceed unity. Therefore, the monochromatic parameter resolutzandWIdth which is equivalent to the absence of temporal

tion bounds presented in Ref. 5 may be significantly im_uncertalnty—a perpetually instantaneous field structure. A

oroved by time or frequency averaging. Further thephysically relevant analogy to this situation is the static but

. ; random interference pattern or speckle found in the reflection
observation of that reference that certain parameters may ng .

. : a coherent laser beam from a smooth surface with

be adequately resolved, even if the number of spatia

i . . wavelength-scale roughne&sin both of these cases, the

samples with unique expectation values exceeds the number

of parameters to be estimated, is not necessarily true for th{(?ndomness is only exhibited by a spatial sampling. And in

o . L : . oth cases the resulting intensity distribution is exponential
specific examples given therein M., is permitted to be : L : .
o . . . with a standard deviation equal to the mean, implying a stan-
greater than unity in accord with the foregoing analysis.

Finally, it is noteworthy that the CCGR fields assumeddarg3 Qewatlon f_or the Intenglty level equal_to Dyers 5.6
. ) . . dB,*? if (1) the fields are sufficiently randomized to be sta-
for this example may in reality be caused by such divers

mechanisms as high-frequency gravity-wave induced ﬂuﬁlonary CCGR variables, an@) the spatial aperture is less
than or equal to the speckle scale.

tuation of the waveguide’s surface boundary or refractive o . . )
. : : . However, once finite bandwidth is introduced by either
index, motion of the source or receiver, or an mcoheren%l) an incoherent sourcé€?) relative motion between source
source. : . .
and receiver,(3) relative motion between scatterer and

source or receiver4) fluctuation of the scatterer or wave-
guide boundary(5) medium scintillation, or(6) the simple
introduction of noise, the randomness takes on a temporal

Now consider Ref. 3, where an object submerged in alependence. Averaging the intensity in time at any point in
waveguide is to be detected using ambient noise as a sourspace reduces the variance by the number of independent and
of opportunity. In that reference, monochromatic bounds arstationary fluctuation®\. Similarly, the intensity-level stan-
derived for the range, cross-range and depth resolution of theéard deviation for CCGR fields is approximated by the de-
object. But the limiting resolutions given for cross-range andcaying quantity(10 loge)/N*? dB with increasing accuracy
depth are extremely poor even at very short ranges from thas N increase$>>* In this context, a monochromatic mea-
object. In the present context, those mean-square err@urement is like an instantaneous one in that it comprises a
bounds become more realistic when they are divided by theingle sample of a temporally fluctuating quantity. But a
maximum allowable sample si2¢,,,,. For example, it may single sample constitutes the least favorable sample popula-
be possible to resolve the objectNf,,, is sufficiently large  tion as far as parameter estimation is concerned because it
that it equals the corresponding monochromatic bound ofields the largest variance. This is well known in applied
Ref. 3 divided by the square of the object scale. Howeverpcean acoustics where parameter estimates are typically de-
even within short ranges of a few object lengths, this ratiorived from ensemble averages such as the complex sample

B. Target detection using ambient noise as a source
of opportunity
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covariance which is widely used in narrow-band matchedrherefore, Eq(9) indicates that
field processing and beamforming. 1

To bridge the gap betwgen these current theoretical and Cc(N)= N MeM*. (A4)
applied approaches, the Fisher information for the sample
covariance is shown to be equal to the number of indepenapplication of Eq.(A3) then yields
dent and stationary samples available times the Fisher infor- 1
mapon for a single sample..T.herefotbere are no prac.t|cal [C_l(N)]qr,st: - [M _1]qs[M* 1., (A5)
limits on parameter resolutioif (1) the bound for a single
sample is finite, which is generally the case of inter&ta | nder the assumptions of Sec. Il A.
sufficiently large population of md_ependent samples can be  Eqr potational convenience, the definitidB=A®B is
found. The parameter resolution issue then becomes one Q&g for the Kronecker product in the main text.
determining the maximum number of such samples.

A means of determining the number of independent, o ,

| ilable in a given measurement period is re—A' B. Baggeroer, W. A. Kuperman, and H. Schmidt, “Matched field pro-
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